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Application of Stochastic Computer Simulation to a 
Solution of a Nonlinear Fokker-Planck Equation 
Governing Bacteria Chemotaxis 
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A stochastic computer simulation technique has been used to solve a one- 
dimensional time-dependent Fokker-Planck (F-P) equation governing space- 
time distribution of bacteria in a substrate (food) gradient. Because of consump- 
tion of the substrate by the bacteria the F-P  equation becomes nonlinear due to 
coupling of the distribution with the self-generated substrate gradient. The 
simulation is efficient and numerically accurate for generating transient solu- 
tions. We are able not only to produce a transient solution displaying approach 
to the steady state solitary wave solution known from an analytical result of 
Keller and Segal but also to show an interesting dependence of the solitary wave 
propagation speed on the concentration dependence of the substrate consump- 
tion rate. 

KEY WORDS: Computer simulation; chemotaxis; stochastic computer 
simulation. 

1. I N T R O D U C T I O N  

C h e m o t a x i s  refers  to a m a n i f e s t a t i o n  by  ce r t a in  s t ra ins  of  bac t e r i a  of  

h a v i n g  the  ab i l i ty  to sense the  p r e s e n c e  of  c h e m i c a l  g rad ien t s  of nu t r i en t s  

o r  of  tox ic  agents .  C h e m o t a x i s  in b a c t e r i a  was  a l r e a d y  d i s c o v e r e d  by  

b io logis t s  E n g e l m a n n  (t) a n d  Pfe f fe r  (2) in the late  n i n e t e e n t h  c e n t u r y  bu t  

m u c h  m o r e  q u a n t i t a t i v e  w o r k  was  d o n e  on  the  m o d e l  bac t e r i a  Escherichia 
eoli in the  late  sixties by  A d l e r  a n d  coworkers .  (3'4) A d l e r  speci f ica l ly  s tud ied  
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chemotaxis of E. coli to oxygen (also called aerotaxis), amino acids, and 
sugars and was able to identify specific "chemo-receptor proteins" located 
in the cell membrane for each of these "chemoeffectors." E. coli was used 
as a model sensory system because of its simplicity, the ease of isolating the 
receptor proteins, and its ease of generic manipulation. (5) 

The simplest demonstration of the phonomenon of chemotaxis is to 
inject suitable numbers of motile E. eoli into the bottom of a tube 
containing oxygen-saturated motility buffer solution. A sharp band of the 
bacteria is soon formed and the band migrates slowly upward because the 
bacteria collectively seek a certain optimum oxygen concentration within a 
traveling oxygen gradient created by their metabolism. If the buffer solu- 
tion also contains nutrients such as serine or galactose then more than one 
band can form because the bacteria would follow both the oxygen gradient 
and, say, the serine gradient. (3) An example of such a band formation is 
given in Fig. 1. 

A mathematical theory of this striking phenomenon of band formation 
and propagation was formulated by Keller and Segel (6) for the simplest 
case of one band. Consequences of the theory were quantitatively tested by 

Fig, 1. Examples of E. coli chemotactic bands in motility buffer. When there is only the 
saturated oxygen as a substrate, there is one band. But when there is an additional substrate 
such as serine present then it becomes possible to have two bands. 
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a light scattering experiment of Holz and Chen (v) recently. The Keller- 
Segel model of chemotaxis consists of a pair of coupled nonlinear Fokker- 
Planck equations involving the bacteria density b(z, t)  and the substrate 
concentration c(z, t). Solution of these coupled equations generally requires 
a numerical procedure, (8'7) 

A mathematically interesting case occurs in the Keller-Segel (K-S) 
model equations when the substrate concentration diffusion can be ne- 
glected. In this case the pair of nonlinear equations can be solved analyti- 
cally in the traveling wave coordinate which respresents a steady state 
propagation of a bacterial band coupled to a substrate front. This solitary 
wave solution was tested experimentally by Holz and Chen (v) and they 
found it approximately valid in describing the band propagation in a liquid 
medium containing oxygen and serine. They pointed out, however, that 
diffusion of the substrate was not negligible and had to be taken into 
account in order to obtain a quantitative agreement between theory and 
experiment. 

Nevertheless, this K-S model (with substrate diffusion neglected) is an 
elegant example of an analytically soluble model and is worth pursuing 
further. In this paper we describe a technique we are currently developing 
for numerical studies of the transition from the transient (band formation) 
to the steady state (band propagation) solution. With this method we are 
able first to show a transient solution which displays approach to the steady 
state solution of Keller and Segel; and next to show an interesting depen- 
dence of the band propagation speed on the substrate consumption rate of 
bacteria. This consumption rate was taken to be a constant in the K-S 
model but in actuality it should be a concentration dependent quantity. 

In Section 2 we shall introduce briefly the K-S model, and its solution. 
In Section 3 we describe the technique of stochastic computer simulation 
for solution of nonlinear Fokker-Planck equations and then in Section 4 
we present the results of the numerical study of the K-S model. We 
conclude in Section 5 with a summary and prospect of the future studies. 

2. KELLER-SEGEL MODEL OF CHEMOTAXIS 

Two variables of interest in the migrating band problem are b(z, t)dz, 
the number of bacteria per unit area between heights (z ,z  + dz) at time t 
and c(z, t )dz,  the number of substrate molecules per unit area between 
heights (z, z + dz) at time t. The continuity equation expressing the conser- 
vation of the number of bacteria is then 

~ b _  ~ [ ~b +v~b] (1) 
~t ~z -/~ ~-z 
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The first term in the bracket on the right-hand side of the equation 
expresses the diffusion current in the z direction due to the random motion. 
This can be taken as a macroscopic manifestation of the microscopic 
random motion in the absence of chemotaxis./~ is the diffusion coefficient 
associated with the random walk and is called the "motility coefficient" in 
the context. The random walk is, however, biased toward the positive z 
direction. If the chemotaxis speed v c were a constant, then Eq. (1) is 
nothing but a Fokker-Planck equation derivable from the Langevin equa- 
tion of a particle in a constant external field. 

The solution of Eq. (1) would then be a band propagating in the z 
direction with a constant speed v c if initially formed. However, the situation 
is more complicated because of the fact that the chemotaxis is a result of 
the gradient sensing of the bacteria. (9) As a result, vc is a function of the 
substrate concentration c(z, t). The statement 
is in essence the "law of chemotaxis." It can 

dF(c) 
vc(c)  = 8 

of this functional dependence 
be formulated by putting 

(2) 

where F(c) is a nondimensional "sensitivity function" and 8 the "che- 
motaxis coefficient" having a dimension of cm2/sec. Keller and Segel (6) in 
their original paper took a specific form 

where Cth may be thought of as the threshold concentration of the substrate 
below which the phenomenon of chemotaxis does not occur. Functional 
form of Eq. (3) was chosen because the logarithmic dependence of the 
sensitivity function on the concentration seemed related to the well-known 
Weber-Fechner  law of sensing applicable for many biological situations. 

With a choice of Eq. (3), Eq. (1) becomes 

O b _  3 [  ~b 8 ~ c  ] 
Ot cqz -/Z-~z + -c-O~z b (4) 

Corresponding conservation equation for the substrate can be written down 
easily as 

Oc O-~- [ - D ~C ] " ~z (5) 

where D is the diffusion coefficient of the substrate and k is the number of 
substrate molecules consumed per second per bacterium. 

2.1. The Solitary Wave Equations 

Experimenally (7~ the bacteria form a sharp band after an initial 
transient period of several minutes. Then the band migrates at an approxi- 
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mately constant speed over a limited length of time (like I0 min). It is thus 
useful to make a transformation of the coordinates to a moving frame by 
setting 

= z - vt (6) 

~-= t (7) 
where v is the migration speed of the band. Equations in the moving frame 
are obtained by replacing in Eqs. (4) and (5) 

at - ~ '  a~ a--f (8) 

to get 

ab ab a~b a [a aCb] 
3'r v - ~ = / L 3 ~  x 3 ~ . c  3~ J (9) 

ac ac aZc 
-~T --'D~-~ = D 3~ 2 - kb (10) 

The experimental observation of a sharp band (v) suggests that we may put 

b ( ~ , z )  = B(~) + b'(~,~-) (11) 

c(~,~-) = c(~)  + c'(~,x) (12) 

and over a limited period of time where the speed is constant, disregard the 
derivatives of b' and c' as compared to that of B(~) and C(~). Then 

dB d2B d [ 3 dC BI  (13) 

dc  d2C - kB  (14) - v . .  = D 
d~ d~ 2 

2.2. Keller-Segel Limit 

Equations (13) and (14) can be solved under the following boundary 
conditions: at 

= - L ,  C -  d C _ o  (15) 
d~ 

= L, C = C O (16) 

and at 

= + L  B -  dB _ 0  (17) 
- d ~  

where + L refers to a large distance above and below the band. Then Eq. 
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(13) can be immediately integrated to give 

B(z )  = Re-X[  C(x) ]  g (18) 

where we introduce dimensionless variables x = (v /~)~,  ~ = ~//~, and R is 
the constant of integration, which can be obtained by demanding that 
integration of B ( x )  from - L  to L gives total number of bacteria in the 
band N. 

Equation (18) indicates that the bacterial distribution peaks at x o 
where 

d l n C ( x ) l ~ = x  ~ _- _1 (19) 
ax 

Also by integrating both sides of Eq. (14) from - L to + L, we get the 
speed of migration v: 

k N  D dC L (20) 
v = A C  ~ C o d~ 

where N stands for the total number of bacteria in the band and A the 
cross-sectional area of the tube. Substituting Eq. (18) into Eq. (14) and 
define dimensionless quantities 

C(x) -  C(x) 
Co (21) 

_ D (22) 

we can rewrite Eq. (14) as 

d2C + d C  = Q e - X C ( x ) S  (23) 
dx 2 -~x 

where 

k/z Co ~_ lR (24) Q = ~ -  

Equation (23) in general can be solved numerically. O) But in a special case 
when the motility coefficient/~ is much larger than the substrate diffusion 
coefficient, or D ~ 0 which we shall call the Keller-Segel limit, it can be 
integrated simply to give an analytical solution 

C(x)  = [ I  + e-X] - ' /(s+') (25) 

In this K- S  limit we have from Eq. (20) 

v = W -  k N  
A C  ~ (26) 
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Fig. 2. 
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An example of the Keller-Segel solution when 6 = 2. The peak represents B(~), the 
bacteria band. 

where C O is the saturated substrate concentration in the medium in which 
bacteria is moving. 

We shall normalize the bacterial density in such a way that 

B ( x )  = e-X[ C(x ) ]~ (6  - 1 ) - '  (27) 

This normalization corresponds to choosing the origin of the coordinate x 0 
at the peak position of B(x). Figure 2 illustrates the K -S  analytical solution 
for the case g = 2. 

2.3. Extension of K-S Solution 

The K - S  analytical solution Eqs. (25)-(27) was obtained under an 
assumption k = const. Physically this assumption is correct only when there 
is an abundance of the nutrient so that bacteria can consume at a constant 
rate. When the substrate is sufficiently depleted there will be a threshold 
concentration CT below which the consumption rate k will be C dependent. 
We can write this dependence as 

k( C ) = kf( C ) (28) 

Returning to Eq. (14) taking D = 0 we get 

d C _  k 
v d~ Co f ( C ) B  (29) 
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It can be converted into 

L ' dC _ k f?LB(~)d~= kN 
f (  C ) Cov CoAv 

Upon using relation Eq. (26) we get 

W_ fo o, dC (30) 
v f ( C )  

which relates the band migration speed v to the K-S  limiting value W 
given in Eq. (26). 

We shall take a reasonable model 

i(-- 
o 

- c/cT), 
f ( C  ) [1, 

for C < (~r 
(31) 

for C >/ C---r 

This model says that the consumption rate is below the saturation value k 
below a threshold concentration Cr and it is equal to k above C T. 
Substituting Eq. (31) into Eq. (30) we obtain 

v 1 - a  (32) 
W l _ a ( l _  CT ) 

Equation (32) shows that the band migration is possible only when a < 1.0, 
and for these values of a the migration speed v is generally lower than 
the K-S  value W. The dependence of v / W  on C T and a is depicted in 
Fig. 3. 
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Fig. 3. v / W  vs. a plots for different values of C T. 
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K - S  equations can be solved analytically also for this model and we 
obtain a solution which is functionally the same as the K - S  solution [Eq. 
(27)] for x > x r but is different for x < x r.  x r is related to C r by 

[ ] x T = In Cr~- 1 
1 - C ~ - '  (33) 

Physically, one can interpret this result as follows. In the K - S  limit 
where the consumption rate k is a constant, bacteria form a well-defined 
band and the band migrates steadily. In a more realistic situation where the 
consumption rate is lower depending on the amount  of nutrient present, 
having a definite threshold value Cr,  the tail part  of the bacterial band is 
affected. The most interesting case corresponds to a = 1 where Eq. (32) 
predicts v = 0. This means that if we initially set up a band, it will migrate 
only for a transient period of time and then eventually the bacteria will 
dissipate and the band will be lost. Physical reason for the dissipation is 
that the tail part  of the bacterial band will gradually lag behind because of 
a lack of the substrate. There is experimental evidence that this is actually 
happening to many of E. coli bands we observe in the laboratory. In reality, 
all the E. coli bands one usually observes may well be transient bands since 
they only last a few hours at most. Therefore it is of great interest to 
investigate the transient solution of the K - S  equation. 

3. S T O C H A S T I C  C O M P U T E R  S I M U L A T I O N  

Theoretically a relevant quantity to compute is: P(z, t[Zo, O)dz, which 
is a conditional probability that a bacterium will be at (z,z + dz) at time t, 
if initially it is at z o. P(z, t [ z 0, 0) satisfies an initial condition 

P(z ,01Zo ,0  ) = 8(z - z0) (34) 

and boundary conditions 

( ~ P )  = 0 ,  P ( ~ , t l z 0 , 0 )  = 0 (35) 
-Z z = 0  

Since it is a conditional probability, one must have 

b (z, t) = fo~dZo P(z, t I Zo, O)b(zo, O) (36) 

This relation guarantees that P(z, t lZo, 0) also satisfies the Fokker-Planck 
equation 

~ t p ( z , t [ z o , O ) =  _ O P~z(_lZ~z +vCP) (37) 

when P(z,t]O,O) is known from solution of Eq. (37) the conservation of 
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bacteria Eq. (36) demands that for an initial distribution 

U N P(z,  t I 0, 0) (38) b(z,O) = 8(z), b(z , t )  = 

Instead of solving a nonlinear Eq. (37) numerically for the conditional 
probability P(z, t ] 0, 0), it is easier to transform it to an equivalent Langevin 
description which deals with the trajectory of bacteria. It is well known (~~ 
that a stochastic differential equation for the position z(t) is a bacterium 
which is equivalent to the Fokker-Planck equation (37) is 

dz(t) = vcdt + (21x)l/2 dW(t )  (39) 

where dW(t)  is a stochastic Wiener process with properties 

( d W ( t ) )  = 0 (40) 

(dW2( t ) )  = dt (41) 

(dW( t )  d W ( t ' ) ) =  3 ( t -  t ' )dtdt '  (42) 

As a consequence 

v c = (  dz ~ -  ) (43) 

is the instantaneous velocity, or the instantaneous force (in this over- 
damped case) acting on an average bacterium which we called the chemo- 
tactic force. Thus it is useful to think of an effective potential V(z) acting 
on each bacterium such that 

a V (44) 
t?c ~ ~ Z  

It is important to realize that v C is not the drift velocity of the bacterial 
band. The drift velocity v is given by 

v = d ( z )  (45) 

which we can calculate from a computer simulation. 
If there is no finite potential barrier the bacteria will move in the range 

( -  oe, m) on the z axis. In our case, the motion is bounded at z = O due to 
existence of the bottom of the cell. One has therefore to use the reflection 
principle of D6sir6 Andr6 (10) and introduce a reflecting barrier at the 
origin. This means that we use a new process which is equivalent z(t) for 
z / > 0 b u t t o  - z ( t )  f o r z > 0 .  

We shall work in terms of scaled variables: z = z0Z and t = t0i where 
z o = iz /v  and t o = lx/v 2. Then Eq. (39) can be written in terms of the scaled 
variables as 

d~ = ~c d[ + , /2dW([)  (46) 



Stochastic Computer Simulation and Bacteria Chemotaxis 181 

where 

vo_ 6 dC (47) 

and v is the band migration speed. 
In a stochastic computed simulation Eq. (46) is supplemented by a 

deterministic equation (K-S model) 

O c  
at kf(C)b 

which is written in a scaled form 

a6 
- bf(C) (48) 

a[ 

The scaling parameter for b is b 0 = Nv2/A Wix. 
The computer simulation goes through the following steps: 
(i) Choose a time and space interval 2x[ and 2x~ such that 

in = nA[ ,  ~ = iA~ (n,  i = O, 1 ,2  . . . .  ) 

(ii) Use the following algorithm to evaluate ~.(t-n+l) given ~(/,): 

~(in+,) = z(in) + f/o+,divc(~, i ) +  r  
t n tn 

--- ~(io) + ~ (~(in), in) + j2~,o (49) 

where 

zi~ = fj-" +'d~ (i) (50) 

zin is a Gaussian random var'iable with (zin) = 0 and variance 

= fif"+'d[= At (51) 

The first step is a purely diffusive motion starting at t = 0 and ~c = 0. 
(iii) Repeating the procedure for many trajectories of bacteria one 

then gets a histogram of b(L t n) using intervals of width A~. 
(iv) Knowing /7(,~, [,) one gets C(L t-n+ 1) by using a simple approxi- 

mation 

C(~,in+,) ~ ~(~, in)- ~(~,in)~, (52). 
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(v) Compute  the derivative OC/O2 by 

- ~ i  ( 5 3 )  ~3~ (~, z+,) ~- ~ (~, i~)-[~(~ + ~ ,  in)- B(~, z) 1 ~ 
(vi) It is then possible to evaluate ~c at [ = t],+l for every value of 

with a 4-point Lagrange interpolation according to the values of ~([~). 
(vii) The procedure  is then iterated to give at each instant not only 

/J(z, [1 z0) and U(~, D but  also (~( [ ) )  and (~2(/))  _ (5( t ) )2  as sums over the 
trajectories. These are two quantities one relates to the speed and width of 
the traveling band. 

4. RESULTS OF THE S I M U L A T I O N  

Before we begin discussion of the result it is useful to give an order of 
magni tude of scales. F rom our  previous experiment (7) we have v ~ 1 • 
10 .4  c m / s e c  and /L---~ 1 • 10 -6 cm2/sec.  Thus  the unit of distance is 
z 0 = ~ t /v  = 0.01 cm and the unit of time is t o = l x / v  2 =  100 sec. These 
figures are consistent with our observations that the width of a bacterial 
band  is generally about  0.1 cm and it migrates about  100 min and 
gradually dissipates itself. 

Figure 4 depicts two typical trajectories ~ vs. [. The  solid line repre- 
sents an asymptotic  average trajectory (~ )  vs. t-. In our scaled unit it has a 
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Fig. 5. The band evolution from transient to the steady state. 

slope of unity. The time and space intervals Ai and A3 used in the 
simulation are, respectively, 0.01 and 0.1. Figure 5 shows a sequence of 
development of an initially prepared band b(z, O) = ( N / A ) 6 ( z ) .  As we see 
the initially sharp band gradually evolves into a K - S  steady state band as 
time goes on. The smooth line drawn under each peak represents the steady 

state K - S  solution. Thus the steady state is reached at i ~> 4, or about 400 
sec, which agrees reasonably well with our experimental observation of 
several minutes. Figure 6 gives plots of (3 )  vs. t for different 6 values 
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Fig. 7. 
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d(~)/d[ vs, i for 8 = 2 case. It shows the approach of v to the steady state value W. 

ranging  f rom 1.5 to 2.0. This range cor responds  to cases of ac tua l  interest.  (7) 
W e  see that  af ter  a t ransient  pe r iod  of t ~< 4, the (2,) vs. [ plots  settle down 
to a cons tan t  s lope of ~ 1 .  In  the same figure we also give ( ~ 2 ) =  (x2) ,  
which is the second m o m e n t  of the t ravel ing band .  This second m o m e n t  
gives a measure  of the width  of the b a n d  which g radua l ly  approaches  a 
cons tan t  value of the K - S  b a n d  width  as the t ime increases above  t /> 4. In 
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Fig. 8. (~) vs. [ for K-S and non-K-S cases. 
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Fig. 9. K-S band locations with respect to the potential V minimum for different values of 8. 

order  to obtain the speed of the band  migrat ion we compute  d(~)/d[ vs. t. 
In  Fig. 7 we show a case for 6 =  2.0 in which we can see the speed 
approach  nicely a value unity (equal to W) for [ >/6. 

Figure 8 gives results of simulation for the extended K - S  case where 
f ( C )  4 :1  in compar ison with the K - S  case where f ( C )  = 1. Curve (a) gives 
the K - S  case where v~ W = 1, (b) gives a case C r = 0.1, a = 0.75, with a 
result v~ W = 0.77, and  (c) gives a case C r = 0.2, a = 0.75 with a result 
v/W= 0.63. As can be seen f rom Fig. 3, v/W< 1 generally for the 
n o n - K - S  cases. 

Figure 9 illustrates the fact that  in the steady state K - S  case one can 
interpret the band  to sit on a min imum of the potential well V as given by 
Eq. (44). Putting ~ _= x it is easy to see that 

8 e -x  0 ~  
e c -  8 - 1  1 + ~ -  0~ (54) 

and the min imum of the well is given by x 0, where 

x0--ln( ) 

5. C O N C L U S I O N  

We showed that the model  equations of Chemotaxis  proposed by 
Keller and Segel (6) can be extended to take into account  the concentra t ion 
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dependence k(c) of the consumption rate. We introduced a simple concen- 
trations dependence of v~ W to C r and c~. 

We used a stochastic computer simulation technique to solve for the 
transient behavior of the K-S  model and extended K -S  equation. We 
showed that the transient solution gradually approaches the steady state 
behavior after [ >/4. It is of interest to apply this technique also to a case 
where diffusion of the substrate is nonzero. 
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